Transient velocity overshoot dynamics in GaAs for electric fields ≤ 200 kV/cm

Abstract
We have experimentally studied the transient velocity overshoot dynamics of photoexcited carriers in GaAs for electric fields as great as 200 kV/cm. Time domain waveforms proportional to the velocity and the acceleration of carriers have been acquired, respectively, from guided and free‐space radiating signals which contain terahertz frequency components. The measurements demonstrated that the degree of overshoot was maximized for an electric field on the GaAs between 40 and 50 kV/cm when 1.44‐eV photons in an 80‐fs laser pulse excited the sample. For carriers excited with higher initial energy (1.55 eV), the degree of overshoot decreased and the maximum degree of overshoot occurred at a higher electric field.