Sensitivity and Depth Penetration of Continuous Wave Versus Frequency-domain Photon Migration Near-infrared Fluorescence Contrast–enhanced Imaging¶
- 1 January 2003
- journal article
- Published by Wiley in Photochemistry and Photobiology
- Vol. 77 (4) , 420-30
- https://doi.org/10.1562/0031-8655(2003)077<0420:sadpoc>2.0.co;2
Abstract
The development of near-infrared fluorescent contrast agents and imaging techniques depends on the deep penetration of excitation light through several centimeters of tissue and the sensitive collection of the re-emitted fluorescence. In this contribution, the sensitivity and depth penetration of various fluorescence-enhanced imaging studies is surveyed and compared with current studies using continuous wave (CW) and frequency-domain photon migration (FDPM) measurements with planar wave illumination of modulated excitation light at 100 MHz and area collection of reemitted fluorescent light using a previously developed modulated intensified charge-coupled device camera system. Fluorescence was generated from nanomolar to micromolar solutions of indocyanine green (ICG) in a 100 microL volume submerged at 1-4 cm depths in a 1% Liposyn solution to mimic tissue scattering properties. Enhanced depth penetration and sensitivity are achieved with optimal filter rejection of excitation light, and FDPM rejection of background light is not achieved using CW methods. We show the ability to detect as few as 100 fmol of ICG from area illumination of 785 nm light (5.5 mW/cm2) and FDPM area collection of 830 nm fluorescent light generated from 3 cm below the phantom surface. The lowered noise floor of FDPM measurements enables greater sensitivity and penetration depth than comparable CW measurements.Keywords
This publication has 42 references indexed in Scilit:
- Fluorescence Lifetime Imaging of Experimental Tumors in Hematoporphyrin Derivative‐Sensitized MicePhotochemistry and Photobiology, 1997
- Enhanced Optical Imaging of Human Gliomas and Tumor MarginsNeurosurgery, 1996
- Effect of indocyanin green formulation on blood clearance and in vivo fluorescence kinetic profile of skinPublished by SPIE-Intl Soc Optical Eng ,1995
- Tumor labeling in vivo using cyanine-conjugated monoclonal antibodiesCancer Immunology, Immunotherapy, 1995
- Enhanced Optical Imaging of Rat Gliomas and Tumor MarginsNeurosurgery, 1994
- Imaging of superficially growing tumors by delayed observation of laser-induced fluorescencePublished by SPIE-Intl Soc Optical Eng ,1993
- TIME‐GATED FLUORESCENCE IMAGING FOR THE DIAGNOSIS OF TUMORS IN A MURINE MODELPhotochemistry and Photobiology, 1993
- Immunophotodiagnosis of colon carcinomas in patients injected with fluoresceinated chimeric antibodies against carcinoembryonic antigen.Proceedings of the National Academy of Sciences, 1992
- Antibody–fluorescein conjugates for photoimmunodiagnosis of human colon carcinoma in nude miceCancer, 1991
- A COMPARISON OF FLUORESCENCE METHODS USED IN THE PHARMACOKINETIC STUDIES OF Zn(II)PHTHALOCYANINE IN MICEPhotochemistry and Photobiology, 1991