Dog mast cell chymase: molecular cloning and characterization

Abstract
We cloned and characterized a cDNA coding for the complete amino acid sequence of dog mast cell chymase. The cDNA was identified by screening a dog mastocytoma cDNA library with an oligonucleotide probe based on the amino acid sequence of a fragment of dog mastocytoma chymase. The deduced amino acid sequence reveals a putative 21-residue prepropeptide followed by a catalytic domain of 228 residues. The primary structure of preproenzyme shares features with rat mucosal mast cell chymase (RMCP II), several lymphocyte-associated proteases, and neutrophil cathepsin G. The common characteristics include an apparent activation peptide terminating in glutamic acid, strict conservation of an octapeptide (residues 9-16) in the N-terminal portion of the catalytic domain, and the presence of only six cysteines available for intramolecular disulfide bond formation. However, dog chymase differs in being modified by N-glycosylation. Although the dog chymase catalytic domain exhibits a similar level of sequence identity when compared with both RMCP II and the rat connective tissue mast cell chymase RMCP I (58% and 61%, respectively), the dog enzyme most closely resembles RMCP I in its high predicted net charge (+16) and in the presence of serine at the base of its putative primary substrate binding pocket. The dog chymase differs strikingly from dog mast cell tryptase in the preprosequence and in the structure of the catalytic domain. Therefore, chymase appears not to be closely related to tryptase and may not share a mechanism of activation, even though both enzymes are packaged and released together.

This publication has 36 references indexed in Scilit: