Accuracy limits in the determination of absolute optical properties using time‐resolved NIR spectroscopy
- 12 June 2001
- journal article
- Published by Wiley in Medical Physics
- Vol. 28 (6) , 1115-1124
- https://doi.org/10.1118/1.1373674
Abstract
We assess typical systematic experimental errors involved in a time-resolvedmeasurement as applied to NIR diffuse optical spectroscopy and investigate their effect on the quantification accuracy of the absorption and the reduced scattering coefficient. We demonstrate that common systematic experimental uncertainties may lead to quantification errors of 10% or more, even when excellent signal to noise ratio conditions exist and accurate photon propagation models are employed. We further demonstrate that the accuracy of the calculation depends nonlinearly on the optical properties of the medium measured. High scattering and low absorbing media can be quantified more accurately than media with low scattering or high absorption using measurements of the same signal to noise ratio. We further discuss curve-shape fitting schemes that aid in improving the quantification accuracy in the presence of experimental errors. Finally, we identify uncertainties that set quantification accuracy limits and we find temporal resolution as the ultimate limiting factor in the quantification accuracy achieved. Our findings suggest that temporal resolution of the order of 10 ps is necessary for quantifying the absorption and reduced scattering coefficient of diffuse media with accuracy better than 5% using curve fitting methods. In that sense this analysis can be used in time-resolved system design and in predicting the expected errors given the technology selected for time-resolvedmeasurements.Keywords
This publication has 22 references indexed in Scilit:
- Phase measurement of light absorption and scatter in human tissueReview of Scientific Instruments, 1998
- Non–invasive measurements of breast tissue optical properties using frequency–domain photon migrationPhilosophical Transactions Of The Royal Society B-Biological Sciences, 1997
- Quantification in tissue near–infrared spectroscopyPhilosophical Transactions Of The Royal Society B-Biological Sciences, 1997
- Improved solutions of the steady-state and the time-resolved diffusion equations for reflectance from a semi-infinite turbid mediumJournal of the Optical Society of America A, 1997
- Experimental test of theoretical models for time-resolved reflectanceMedical Physics, 1996
- Imaging Brain Injury Using Time-Resolved Near Infrared Light ScanningPediatric Research, 1996
- The influence of boundary conditions on the accuracy of diffusion theory in time-resolved reflectance spectroscopy of biological tissuesPhysics in Medicine & Biology, 1995
- Correlation Between the Light Scattering and the Mitochondrial Content of Normal Tissues and Transplantable Rodent TumorsAnalytical Biochemistry, 1995
- Quantitation of time- and frequency-resolved optical spectra for the determination of tissue oxygenationAnalytical Biochemistry, 1991
- Time resolved reflectance and transmittance for the noninvasive measurement of tissue optical propertiesApplied Optics, 1989