Sheath motion in a capacitively coupled radio frequency discharge

Abstract
The sheath motion in a capacitively coupled RF discharge is highly nonlinear. The voltage waveform on a cylindrical probe placed in the sheath region is measured as a function of position and time. A circuit model of the probe-discharge system relates the observed probe voltage to the sheath motion. The equations derived from this circuit model are solved numerically with varying nonlinear sheath motions; the resulting waveforms are compared with the experimental observations to determine the actual sheath motion. The time-varying plasma potential is also determined, indirectly, from the comparison. The authors also report observation of oscillations related to the plasma frequency, whose peak harmonic component can be calculated from a single plasma model. These oscillations can be a useful plasma diagnostic for determining plasma density. The presence of these high-frequency oscillations may significantly enhance the rate of stochastic heating of electrons.

This publication has 12 references indexed in Scilit: