Flow cytometric analysis of rodent epididymal spermatozoal chromatin condensation and loss of free sulfhydryl groups

Abstract
Flow cytometric measurements were made on acridine orange (AO) and 7-diethylamino-3-(4′-maleimidylphenyl)-4-methylcoumarin (CPM)-stained epididymal- and vas deferens-derived spermatozoal nuclei to follow the course of chromatin condensation and oxidation of free sulfhydryl groups, respectively, during passage through mouse and rat posttesticular reproductive tracts. Alterations of mouse and rat spermatozoal chromatin during transition from a testicular elongated spermatids to epididymal caput spermatozoc resulted in a threefold loss of DNA stainability with AO. Passage of spermatozoa from the caput to corpus epididymis was accompanied by an approximate 15% loss of DNA stainability, which was maintained at that level throughout passage into the vas deferens. AO stainability of epididymal spermatozoal nuclei was generally independent of –SH group stainability. CPM stanability of rat spermatozoal nuclei free –SH groups was 83%, 18%, and 11% of caput spermatozoal values for corpus, cauda epididymis, and vas deferens, respectively. Comparable values for mice were 69%, 20%, and 18%. CPM stainability was relatively homogeneous for these mouse and rat reproductive tract regions, except mouse corpus epididymis spermatozoal nuclei stained very heterogeneously. Rat spermatozoa detained by ligature up to 7 days in the caput, corpus, and cauda epididymi had CPM staining values equal to or below those of normal vas spermatozoa, indicating that disulfide (S-S) bonding is intrinsic to the spermatozoa and is independent of the epididymal environment. These data suggest that chromatin condensation and loss of spermatozoal DNA stainability during passage from the testis to the vas deferens are independent of S-S bonding. Furthermore, the results are in agreement with previous findings suggesting that autoxidation of SH groups occurs independently of movement through the epididymis.