A high performance differential amplifier through the direct monolithic integration of InP HBTs and Si CMOS on silicon substrates

Abstract
We present results on the direct monolithic integration of III-V devices and Si CMOS on a silicon substrate. InP HBTs (0.5 times 5 um2 emitter) with ft and fmax > 200 GHz were grown directly in windows adjacent to CMOS transistors on silicon template wafers or SOLES (Silicon on Lattices Engineered Substrates). A BCB based multilayer interconnect process was used to interconnect the InP HBT and Si CMOS to create a differential amplifier demonstration circuit. The heterogeneously integrated differential amplifier serves as the building block for high speed, low power dissipation mixed signal circuits such as ADCs and DACs.