Alkylglycerol Prodrugs of Phosphonoformate Are Potent In Vitro Inhibitors of Nucleoside-Resistant Human Immunodeficiency Virus Type 1 and Select for Resistance Mutations That Suppress Zidovudine Resistance
Open Access
- 1 June 2001
- journal article
- Published by American Society for Microbiology in Antimicrobial Agents and Chemotherapy
- Vol. 45 (6) , 1621-1628
- https://doi.org/10.1128/aac.45.6.1621-1628.2001
Abstract
Phosphonoformate (foscarnet; PFA) is a potent inhibitor of human immunodeficiency virus type 1 (HIV-1) reverse transcriptase (RT), but its use for the treatment of HIV-1 infection is limited by toxicity and the lack of an orally bioavailable formulation. Alkylglycerol-conjugated prodrugs of PFA (1-O-octadecyl-sn-glycero-3-PFA [B-PFA]) having sn-2 substituents of hydrogen (deoxybatyl-PFA [DB-PFA]), methyl (MB-PFA), or ethyl (EB-PFA) are more-potent inhibitors of wild-type HIV-1 in vitro than unmodified PFA and are orally bioavailable in mice. We have evaluated the activities of these compounds against a panel of nucleoside-resistant HIV-1 variants and have characterized the resistant variants that emerge following in vitro selection with the prodrugs. Except for an HIV-1 variant encoding the K65R mutation in RT that exhibited 3.3- to 8.2-fold resistance, the nucleoside-resistant viruses included in the panel were sensitive to the PFA prodrugs (10-fold) were selected in vitro after 15 or more serial passages of HIV-1 in MT-2 cells in escalating prodrug concentrations. Mutations detected in the resistant viruses were S117T, F160Y, and L214F (DB-PFA); M164I and L214F (MB-PFA); and W88G and L214F (EB-PFA). The S117T, F160Y, and M164I mutations have not been previously identified. Generation of recombinant viruses encoding the single and double mutations confirmed their roles in prodrug resistance, including 214F, which generally increased the level of resistance. When introduced into a zidovudine (AZT)-resistant background (67N 70R 215F 219Q), the W88G, S117T, F160Y, and M164I mutations reversed AZT resistance. This suppression of AZT resistance is consistent with the effects of other foscarnet resistance mutations that reduce ATP-dependent removal of AZT monophosphate from terminated template primers. The favorable activity and resistance profiles of these PFA prodrugs warrant their further evaluation as clinical candidates.Keywords
This publication has 36 references indexed in Scilit:
- In Vitro Selection of Mutations in the Human Immunodeficiency Virus Type 1 Reverse Transcriptase That Decrease Susceptibility to (−)-β- d -Dioxolane-Guanosine and Suppress Resistance to 3′-Azido-3′-DeoxythymidineAntimicrobial Agents and Chemotherapy, 2000
- Phenotypic Mechanism of HIV-1 Resistance to 3‘-Azido-3‘-deoxythymidine (AZT): Increased Polymerization Processivity and Enhanced Sensitivity to Pyrophosphate of the Mutant Viral Reverse TranscriptaseBiochemistry, 1998
- The role of genotypic heterogeneity in wild type virus populations on the selection of nonnucleoside reverse transcriptase inhibitor-resistant virusesAntiviral Research, 1997
- Lipid prodrugs of phosphonoacids: greatly enhanced antiviral activity of 1-O-octadecyl-sn-glycero-3-phosphonoformate in HIV-1, HSV-1 and HCMV-infected cells, in vitroAntiviral Research, 1996
- Novel mutations in reverse transcriptase of human immunodeficiency virus type 1 reduce susceptibility to foscarnet in laboratory and clinical isolatesAntimicrobial Agents and Chemotherapy, 1995
- Resistance of human immunodeficiency virus type 1 to acyclic 6-phenylselenenyl- and 6-phenylthiopyrimidinesAntimicrobial Agents and Chemotherapy, 1994
- A Controlled Trial Comparing Foscarnet with Vidarabine for Acyclovir-Resistant Mucocutaneous Herpes Simplex in the Acquired Immunodeficiency SyndromeNew England Journal of Medicine, 1991
- FoscarnetDrugs, 1991
- Foscarnet Nephrotoxicity: Mechanism, Incidence and PreventionAmerican Journal of Nephrology, 1989
- Site-specific mutagenesis of AIDS virus reverse transcriptaseNature, 1987