Abstract
A method is described for calculation of the real (ε1) and imaginary parts (ε2) of the dielectric function of Si and Ge at energies below and above the fundamental absorption edge, in which the model is based on the Kramers-Kronig transformation and strongly connected with the electronic energy-band structure of the medium. A complete set of the critical points (CP’s) are considered in this study. This model reveals distinct structures at energies of the E0, E0+Δ0 [three-dimensional (3D) M0], E1, E1+Δ1 (3D M1 or 2D M0), E2 [a mixture of damped harmonic oscillator (DHO) and 2D M2], E1, and E0 (triplet) CP’s (DHO). The indirect-band-gap transitions also play an important part in the spectral dependence of ε2 of Si. Results are in satisfactory agreement with the experimental information over the entire range of photon energies. The strength and broadening parameters at energies of each CP are obtained and discussed.