Interband Transitions and Exciton Effects in Semiconductors
- 15 January 1972
- journal article
- research article
- Published by American Physical Society (APS) in Physical Review B
- Vol. 5 (2) , 497-509
- https://doi.org/10.1103/physrevb.5.497
Abstract
The band structures of Ge, Si, GaAs, GaP, GaSb, InAs, InP, InSb, and AlSb have been studied in reflectivity in the energy region 1.6-5.0 eV at temperatures ranging from 80 to 300 °K. Utilizing a double-beam, single-detector wavelength-modulation system, and ensuing Kramers-Krönig analyses, experimentally unambiguous line shapes have been obtained for the real and imaginary part of the dielectric constants, permitting the identification of the types of critical points involved in an optical transition, and the determination of the existence of hyperbolic exciton interactions. Such an interaction has been verified in all materials, except Si, as an critical point located at in the Brillouin zone. The location and energy of the interband transition in these semiconductors correlates with existing band calculations. The interband transitions in Si are dominated by structure from a large region of the Brillouin zone. The high-energy transitions in all materials give evidence of a multiplicity of critical-point structure.
Keywords
This publication has 35 references indexed in Scilit:
- Excitonic Effects on theandTransitions in InAsPhysical Review Letters, 1970
- Wavelength-Modulation Spectra of Some SemiconductorsPhysical Review B, 1970
- Preparation and Optical Properties of InAs1−xPx AlloysJournal of Applied Physics, 1969
- Thermoreflectance in SemiconductorsPhysical Review B, 1968
- New Evidence for the Existence of Exciton Effects at Hyperbolic Critical PointsPhysical Review B, 1968
- Electroreflectance at a Semiconductor-Electrolyte InterfacePhysical Review B, 1967
- Piezoreflectivity of the Noble MetalsPhysical Review B, 1966
- Reflectance modulation at a germanium surfaceSolid State Communications, 1966
- Band-Structure Analysis from Electro-Reflectance StudiesPhysical Review B, 1966
- Dependence of the Optical Constants of Silicon on Uniaxial StressPhysical Review Letters, 1965