Abstract
Selection of an interspecific hybridEscherichia coli K 12 1EA in a chemostat on xylitol yielded a stable mutant synthesizing a four-fold amount of ribitol dehydrogenase (EC 1.1.1.56). Subsequent cultivation of the mutant under increased selection pressure resulted in an accumulation of a mutant with 12-fold higher level of ribitol dehydrogenase relative to the parent strain 1EA. A selection during which a UV-mutagenized population of the 1EA mutant was cultivated in a chemostat on xylitol was accompanied by monitoring the activities of ribitol dehydrogenase andD-arabinitol dehydrogenase (EC 1.1.1.11) of two adjacent catabolite operons. A several-fold increase in the activity of the two enzymes was followed by further increase in the activity of ribitol dehydrogenase and a concomitant drop in the activity ofD-arabinitol dehydrogenase. The two hyperproducing strains are compared with the parent mutant as to the rate of synthesis of the two dehydrogenases and growth parameters under the conditions of batch cultivation.