Efficient spatial redistribution of quantum dot spontaneous emission from two-dimensional photonic crystals

Abstract
We investigate the modification of the spontaneous emission dynamics and external quantum efficiency for self-assembled InGaAs quantum dots coupled to extended and localised photonic states in GaAs 2D-photonic crystals. The 2D-photonic bandgap is shown to give rise to a 5-10 times enhancement of the external quantum efficiency whilst the spontaneous emission rate is simultaneously reduced by a comparable factor. Our findings are quantitatively explained by a modal redistribution of spontaneous emission due to the modified local density of photonic states. The results suggest that quantum dots embedded within 2D-photonic crystals are suitable for practical single photon sources with high external efficiency
All Related Versions