Shear viscosity of strongly coupled N=4 supersymmetric Yang-Mills plasma
Preprint
- 28 July 2001
Abstract
Using the anti-de Sitter/conformal field theory correspondence, we relate the shear viscosity \eta of the finite-temperature N=4 supersymmetric Yang-Mills theory in the large N, strong-coupling regime with the absorption cross section of low-energy gravitons by a near-extremal black three-brane. We show that in the limit of zero frequency this cross section coincides with the area of the horizon. From this result we find \eta=\pi/8 N^2T^3. We conjecture that for finite 't Hooft coupling (g_YM)^2N the shear viscosity is \eta=f((g_YM)^2N) N^2T^3, where f(x) is a monotonic function that decreases from O(x^{-2}\ln^{-1}(1/x)) at small x to \pi/8 when x\to\infty.Keywords
All Related Versions
This publication has 0 references indexed in Scilit: