Combining Nerve Fiber Layer Parameters to Optimize Glaucoma Diagnosis with Optical Coherence Tomography
- 31 August 2008
- journal article
- research article
- Published by Elsevier in Ophthalmology
- Vol. 115 (8) , 1352-1357.e2
- https://doi.org/10.1016/j.ophtha.2008.01.011
Abstract
No abstract availableKeywords
This publication has 42 references indexed in Scilit:
- Association Between Localized Visual Field Losses and Thickness Deviation of the Nerve Fiber Layer in GlaucomaJournal of Glaucoma, 2005
- Relationships between Standard Automated Perimetry, HRT Confocal Scanning Laser Ophthalmoscopy, and GDx VCC Scanning Laser PolarimetryInvestigative Opthalmology & Visual Science, 2005
- Optical Coherence Tomography Machine Learning Classifiers for Glaucoma Detection: A Preliminary StudyInvestigative Opthalmology & Visual Science, 2005
- Regional Optic Nerve Damage in Experimental Mouse GlaucomaInvestigative Opthalmology & Visual Science, 2004
- Sensitivity and specificity of scanning laser polarimetry using the GDxBritish Journal of Ophthalmology, 2004
- Heidelberg Retina Tomograph Measurements of the Optic Disc and Parapapillary Retina for Detecting Glaucoma Analyzed by Machine Learning ClassifiersInvestigative Opthalmology & Visual Science, 2004
- Optical coherence tomography (oct) macular and peripapillary retinal nerve fiber layer measurements and automated visual fieldsAmerican Journal of Ophthalmology, 2004
- Comparison of data analysis tools for detection of glaucoma with the heidelberg retina tomographOphthalmology, 2003
- Longitudinal data analysis using generalized linear modelsBiometrika, 1986
- A Heteroskedasticity-Consistent Covariance Matrix Estimator and a Direct Test for HeteroskedasticityEconometrica, 1980