Corticotectal circuit in the cat: a functional analysis of the lateral geniculate nucleus layers of origin
- 1 June 1988
- journal article
- review article
- Published by American Physiological Society in Journal of Neurophysiology
- Vol. 59 (6) , 1783-1797
- https://doi.org/10.1152/jn.1988.59.6.1783
Abstract
1. The dorsal lateral geniculate nucleus (LGN) of the cat is a major thalamic relay between the retina and several visual cortical areas. These cortical areas in turn project to the superior colliculus (SC). The aim of the present experiment was to determine which LGN layers provide a necessary input to the corticotectal circuit. 2. Individual layers of the LGN were reversibly inactivated by microinjection of cobalt chloride during recording of visual responses in the retinotopically corresponding part of the superior colliculus. 3. For cells driven through the contralateral eye, inactivation of layer A or the medial interlaminar nucleus (MIN) had little effect on visual responsiveness in the superior colliculus. In contrast, inactivation of layer C abolished visual responses at one-quarter of the SC recording sites, reduced responses at another quarter, and left half of the recording sites unaffected. 4. For cells driven through the ipsilateral eye, inactivation of layer C1 or the MIN had no effect. Inactivation of layer A1 uniformly reduced visual responses in the superior colliculus and usually abolished them entirely. 5. These results are compatible with previous work showing that cortical input to the SC originates from Y-cells. They indicate that two of the five Y-cell containing layers (A1 and C) provide major inputs to the corticotectal circuit. The results suggest that layer A1 is functionally allied to layer C as well as to layer A.This publication has 2 references indexed in Scilit:
- Patterns of retinal terminations and laminar organization of the lateral geniculate nucleus of primatesJournal of Comparative Neurology, 1978
- Topographic organization of the projections from cortical areas 17, 18, and 19 onto the thalamus, pretectum and superior colliculus in the catJournal of Comparative Neurology, 1977