Improving Quantitative Studies of International Conflict: A Conjecture
- 1 March 2000
- journal article
- research article
- Published by Cambridge University Press (CUP) in American Political Science Review
- Vol. 94 (1) , 21-35
- https://doi.org/10.1017/s0003055400220078
Abstract
We address a well-known but infrequently discussed problem in the quantitative study of international conflict: Despite immense data collections, prestigious journals, and sophisticated analyses, empirical findings in the literature on international conflict are often unsatisfying. Many statistical results change from article to article and specification to specification. Accurate forecasts are nonexistent. In this article we offer a conjecture about one source of this problem: The causes of conflict, theorized to be important but often found to be small or ephemeral, are indeed tiny for the vast majority of dyads, but they are large, stable, and replicable wherever the ex ante probability of conflict is large. This simple idea has an unexpectedly rich array of observable implications, all consistent with the literature. We directly test our conjecture by formulating a statistical model that includes its critical features. Our approach, a version of a “neural network” model, uncovers some interesting structural features of international conflict and, as one evaluative measure, forecasts substantially better than any previous effort. Moreover, this improvement comes at little cost, and it is easy to evaluate whether the model is a statistical improvement over the simpler models commonly used.Keywords
This publication has 35 references indexed in Scilit:
- Nations at WarPublished by Cambridge University Press (CUP) ,1998
- Timing of Vote Decision in First and Second Order Dutch Elections 1978–1995: Evidence from Artificial Neural NetworksPolitical Analysis, 1998
- Pattern Recognition and Neural NetworksPublished by Cambridge University Press (CUP) ,1996
- Bayesian Learning for Neural NetworksPublished by Springer Nature ,1996
- Artificial neural networks: an econometric perspective∗Econometric Reviews, 1994
- Endogenous Preferences and the Study of InstitutionsAmerican Political Science Review, 1993
- The War PuzzlePublished by Cambridge University Press (CUP) ,1993
- Approximation capabilities of multilayer feedforward networksNeural Networks, 1991
- Neural NetworksPublished by Springer Nature ,1990
- On the bias in flexible functional forms and an essentially unbiased formJournal of Econometrics, 1981