Optical properties of GaN layers grown on C-, A-, R-, and M-plane sapphire substrates by gas source molecular beam epitaxy
- 25 May 1999
- journal article
- research article
- Published by AIP Publishing in Journal of Applied Physics
- Vol. 85 (12) , 8386-8399
- https://doi.org/10.1063/1.370686
Abstract
GaN layers were grown on C-, A-, R-, and M-plane sapphire substrates by the electron cyclotron resonance–molecular beam epitaxy technique. We addressed a combined utilization of Raman spectroscopy, photoluminescence (PL) and reflectance measurements to investigate the optical properties of these high-quality GaN layers. First order optical phonons of and symmetries were observed in the Raman spectra and the peaks are indicative of the wurtzite crystal structure. All three intrinsic exciton transitions arising from A, B, and C interband transitions were observed in reflectance measurements. The PL spectra were dominated by A and B free exciton transitions and the recombination of an exciton bound to a neutral donor. The experimental data clearly revealed a thickness-dependent change of the biaxial strain in the GaN layers grown on (0001) C-plane sapphire. The residual strain induced in these layers was found to have a strong influence in determining the energies of the excitonic transitions. Resonant Raman scattering measurements were performed by temperature tuning of fundamental gap in 1.0 μm GaN on C-plane sapphire. The influence of epitaxial strain in free exciton properties of GaN layers grown on various orientations of sapphire has been discussed based on the PL and reflectance results. The exciton binding energies were estimated in the GaN layers grown on C-, A-, and M-plane sapphire substrates. Polarized Raman measurements were performed on GaN layers grown on various orientations of sapphire and we observed quasipolar modes of both and symmetries. An additional broad photoluminescence band centered around 2.74 eV was observed in the GaN layers grown on R- and M-plane sapphire substrates. The defect induced Raman scattering in resonance with this band shows strong Raman scattering peaks resulting from the transition between energy levels of donor species or defect states.
This publication has 47 references indexed in Scilit:
- Exciton-phonon interactions, exciton binding energy, and their importance in the realization of room-temperature semiconductor lasers based on GaNPhysical Review B, 1998
- Defect-induced Raman scattering in resonance with yellow luminescence transitions in hexagonal GaN on a sapphire substrateApplied Physics Letters, 1998
- Optical anisotropy of excitons in strained GaN epilayers grown along the 〈101¯0〉 directionPhysical Review B, 1997
- Gas Source Molecular Beam Epitaxy Growth of GaN on C-, A-, R- and M-Plane Sapphire and Silica Glass SubstratesJapanese Journal of Applied Physics, 1997
- Strain effects on excitonic transitions in GaN: Deformation potentialsPhysical Review B, 1996
- Elastic constants of gallium nitrideJournal of Applied Physics, 1996
- Time-resolved exciton luminescence in GaN grown by metalorganic chemical vapor depositionApplied Physics Letters, 1995
- Thermal stress in GaN epitaxial layers grown on sapphire substratesJournal of Applied Physics, 1995
- Temperature dependence of interband transitions in GaN grown by metalorganic chemical vapor depositionApplied Physics Letters, 1995
- Substrate-orientation dependence of GaN single-crystal films grown by metalorganic vapor-phase epitaxyJournal of Applied Physics, 1987