Spin-polarized electronic structure of the Ni(001) surface and thin films
- 15 September 1982
- journal article
- research article
- Published by American Physical Society (APS) in Physical Review B
- Vol. 26 (6) , 2790-2809
- https://doi.org/10.1103/physrevb.26.2790
Abstract
Spin-polarized energy bands, charge and spin densities have been calculated self-consistently for one, three, and five atomic (001) layers of fcc Ni using the linear augmented plane-wave method and the von Barth—Hedin approximation for exchange and correlation. The self-consistent potential of the five-layer film is used to calculate the electronic structure of a 13-layer film. The theoretical work function of 5.4 eV agrees well with the experimental value of 5.2 eV. The calculated spin moments are ordered ferromagnetically in all the films considered, and the moments of the atoms in the surface layer are 0.95, 0.69, and 0.65 Bohr magnetons for the one-, three-, and five-layer films, respectively. The moment of an atom in the central layer of the five-layer film is 0.61 Bohr magnetons as compared with the calculated (experimental) bulk value of 0.59±0.01 (0.56) Bohr magnetons. The increase of the magnetic moment at the surface is mainly of character. The calculated contribution to the hyperfine field changes sign and becomes positive in the outermost layer. Near , between the Fermi level and the -band edge (which lies 0.3 eV below the Fermi level), we find no majority-spin surface states that can explain the sign reversal of the electron spin polarization near threshold. This supports the suggestion by Liebsch that, in photoemission experiments on Ni, correlation effects make the majority-spin bands appear higher in energy. With such an adjustment of our energy bands we are able to identify the two spin-up surface bands, but not the band, observed in angular-resolved photoemission experiments.
Keywords
This publication has 54 references indexed in Scilit:
- Angle-resolved photoemission determination of the band structure and multielectron excitations in NiPhysical Review B, 1980
- Effect of Self-Energy Corrections on the Valence-Band Photoemission Spectra of NiPhysical Review Letters, 1979
- Experimental energy-band dispersions and exchange splitting for NiPhysical Review B, 1979
- Experimental Band Structure and Temperature-Dependent Magnetic Exchange Splitting of Nickel Using Angle-Resolved PhotoemissionPhysical Review Letters, 1978
- Photoemission from transition metal surfacesJournal of Physics F: Metal Physics, 1978
- Comment on "Spin-Polarized Photoelectrons from Nickel Single Crystals"Physical Review Letters, 1977
- Energy bands in ferromagnetic nickelPhysical Review B, 1977
- Magnetic and cohesive properties from canonical bands (for transition metals)Journal of Physics F: Metal Physics, 1976
- A simple band theory interpretation of the spin polarized photoelectron data for nickel and cobaltPhysics Letters A, 1971
- New Determinations of the Saturation Magnetization of Nickel and IronJournal of Applied Physics, 1968