Diagnostic system for measurement of particle balance in TMX-U

Abstract
Several diagnostics measure the particle sources and losses in the Tandem Mirror Experiment-Upgrade (TMX-U) plasma. An absolutely calibrated high-speed (0.5 ms per frame) filtered (6561 Å) video camera measures the total ionization source as a function of radius. An axial view of the plasma automatically integrates the axial variations within the depth of field of the system. Another camera, viewing the plasma radially, measures the axial source variations near the deuterium fueling source. Axial ion losses are measured by an array of Faraday cups that are equipped with grids for repelling electrons and are mounted at each end of the experiment. Unequal ion and electron (nonambipolar) radial losses are inferred from net current measurements on an array of grounded plates at each end. Any differences between the measured particle losses and sources may be attributed to ambipolar radial losses and/or azimuthal asymmetries in the particle-loss profiles. Methods of system calibration, along with details of computer data acquisition and processing of this relatively large set of data, are also presented.

This publication has 4 references indexed in Scilit: