Ozone-induced Bronchial Hyperresponsiveness in the Rat Is Not Accompanied by Neutrophil Influx or Increased Vascular Permeability in the Trachea

Abstract
We determined whether ozone-induced bronchial hyperresponsiveness in the rat is accompanied by neutrophil influx or increased vascular permeability in the trachea. Three groups of female Long-Evans rats were studied. One group was exposed to 4 ppm ozone for 2 h and studied immediately thereafter, another group was similarly exposed but was not studied until 24 h after the ozone exposure, and a third group consisted of control rats that breathed room air. Increases in total pulmonary resistance caused by acetylcholine aerosol were measured to assess bronchial responsiveness in these 3 groups. In parallel studies, neutrophil influx into the tracheal mucosa was quantified by counting cells within whole mounts of tracheas that were treated histochemically to stain the myeloperoxidase in neutrophils, and tracheal vascular permeability was quantified by measuring the amount of Evans blue dye extravasated into the trachea. In the rats studied immediately after the ozone exposure, the concentration of acetylcholine required to increase total pulmonary resistance to three-fold the baseline value was only 6% of that required in the controls. In the rats studied 24 h after the ozone exposure, this provocative acetylcholine concentration was not significantly different from that of the controls. Neither the number of neutrophils in the tracheal mucosa nor the amount of Evans blue dye extravasated into the trachea was significantly different from the corresponding control values at either time. We conclude that rats exposed to ozone develop bronchial hyperresponsiveness without detectable neutrophil influx or increased vascular permeability in the trachea.

This publication has 16 references indexed in Scilit: