Subcellular compartmentalization of 1-methyl-4-phenylpyridinium with catecholamines in adrenal medullary chromaffin vesicles may explain the lack of toxicity to adrenal chromaffin cells.
- 1 November 1987
- journal article
- research article
- Published by Proceedings of the National Academy of Sciences in Proceedings of the National Academy of Sciences
- Vol. 84 (22) , 8160-8164
- https://doi.org/10.1073/pnas.84.22.8160
Abstract
Cultures of bovine adrenomedullary chromaffin cells accumulated 1-methyl-4-phenylpyridinium (MPP+) in a time- and concentration-dependent manner by a process that was prevented by desmethylimipramine. The subcellular localization of the incorporated [methyl-3H]MPP+ was examined by differential centrifugation and sucrose density gradient fractionation and was found to be predominantly colocalized with catecholamines in chromaffin vesicles, and negligible amounts were detected within the mitochondrial fraction. When chromaffin cell membranes were made permeable with the detergent digitonin in the absence of calcium, there was no increase in the release of [3H]MPP+, indicating that there is negligible accumulation of the neurotoxin in the cytosol. Simultaneous exposure to digitonin and calcium induced cosecretion of MPP+ and catecholamines. Stimulation of the cells with nicotine released both catecholamines and MPP+ at identical rates and percentages of cellular content in a calcium-dependent manner. Last, when cells were incubated with MPP+ in the presence of tetrabenazine (an inhibitor of vesicular uptake), the chromaffin cell toxicity of MPP+ was potentiated. We submit that the ability of the chromaffin cells to take up and store MPP+ in the chromaffin vesicle prevents the toxin''s interaction with other structures and, thus, prevents cell damage. As an extension of this hypothesis, the relative resistance of some brain monoaminergic neurons to the toxic actions of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine may result from the subcellular sequestration of MPP+ in the storage vesicle.This publication has 26 references indexed in Scilit:
- Metabolism of the neurotoxic tertiary amine, MPTP, by brain monoamine oxidasePublished by Elsevier ,2004
- Inhibition of NADH-linked oxidation in brain mitochondria by 1-methyl-4-phenyl-pyridine, a metabolite of the neurotoxin, 1-methyl-4-phenyl-1,2,5,6-tetrahydropyridinePublished by Elsevier ,2002
- A rapid and sensitive assay for tyrosine-3-monooxygenase based upon the release of 3H2O and adsorption of [3H]-tyrosine by charcoalLife Sciences, 1986
- Characterization of the neurotoxic potential of m-methoxy-MPTP and the use of its N-ethyl analog as a means of avoiding exposure to a possible Parkinson-causing agentJournal of Medicinal Chemistry, 1986
- Amphetamine, but not reserpine, protects mice against dopaminergic neurotoxicity of MPTPNeuropharmacology, 1985
- Intraneuronal generation of a pyridinium metabolite may cause drug-induced parkinsonismNature, 1984
- Dopaminergic Neurotoxicity of 1-Methyl-4-Phenyl-1,2,5,6-Tetrahydropyridine in MiceScience, 1984
- AETIOLOGY OF PARKINSON'S DISEASEThe Lancet, 1983
- Chronic Parkinsonism in Humans Due to a Product of Meperidine-Analog SynthesisScience, 1983
- Primary culture of adrenal medullary chromaffin cells in a chemically defined mediumExperimental Cell Research, 1981