Do we need full compliance data for population pharmacokinetic analysis?
- 1 June 1996
- journal article
- pharmacometrics
- Published by Springer Nature in Journal of Pharmacokinetics and Biopharmaceutics
- Vol. 24 (3) , 265-282
- https://doi.org/10.1007/bf02353671
Abstract
For population pharmacokinetic analysis of multiple oral doses one of the key issues is knowing as precisely as possible the dose inputs in order to fit a model to the input-output (dose-concentration) relationship. Recently developed electronic monitoring devices, placed on pill containers, permit precise records to be obtained over months, of the time/date opening of the container. Such records are reported to be the most reliable measurement of drug taking behavior for ambulatory patients. To investigate strategies for using and summarizing this new abundant information, a Markov chain process model was developed, that simulates compliance data from real data from electronically monitored patients, and data simulations and analyses were conducted. Results indicate that traditional population pharmacokinetic analysis methods that ignore actual dosing information tend to estimate biased clearance and volume and markedly overestimate random interindividual variability. The best dosing information summarization strategies consist of initially estimating population pharmacokinetic parameters, using no covariates and only a limited number of dose records, the latter chosen based on an a priori estimate of the half-life of the drug in the compartment of interest; then resummarizing the dose records using either population or individual posterior Bayes parameter estimates from the first population fit; and finally reestimating the population parameters using the newly summarized dose records. Such summarization strategies yield the same parameter estimates as using full dosing information records while reducing by at least 75% the CPU time needed for a population pharmacokinetic analysis.Keywords
This publication has 19 references indexed in Scilit:
- Role of Patient Compliance in Clinical PharmacokineticsClinical Pharmacokinetics, 1994
- Designing an optimal experiment for Bayesian stimation: Application to the Kinetics of iodine thyroid uptakeStatistics in Medicine, 1994
- The estimation of population pharmacokinetic parameters using an EM algorithmComputer Methods and Programs in Biomedicine, 1993
- Smooth nonparametric maximum likelihood estimation for population pharmacokinetics, with application to quinidineJournal of Pharmacokinetics and Biopharmaceutics, 1992
- Prediction of Diltiazem Plasma Concentration Curves From Limited Measurements Using Compliance DataClinical Pharmacokinetics, 1992
- Measurement of patient compliance and the interpretation of randomized clinical trialsEuropean Journal of Clinical Pharmacology, 1991
- Compliance as an Explanatory Variable in Clinical TrialsJournal of the American Statistical Association, 1991
- Bayesian and Frequentist Predictive Inference for the Patterns of Care StudiesJournal of the American Statistical Association, 1991
- Experimental design and efficient parameter estimation in population pharmacokineticsJournal of Pharmacokinetics and Biopharmaceutics, 1990
- Influence of Adherence to Treatment and Response of Cholesterol on Mortality in the Coronary Drug ProjectNew England Journal of Medicine, 1980