GLOBAL INSTABILITIES IN SPATIALLY DEVELOPING FLOWS: Non-Normality and Nonlinearity
Top Cited Papers
- 1 January 2005
- journal article
- Published by Annual Reviews in Annual Review of Fluid Mechanics
- Vol. 37 (1) , 357-392
- https://doi.org/10.1146/annurev.fluid.37.061903.175810
Abstract
▪ Abstract The objective of this review is to critically assess the different approaches developed in recent years to understand the dynamics of open flows such as mixing layers, jets, wakes, separation bubbles, boundary layers, and so on. These complex flows develop in extended domains in which fluid particles are continuously advected downstream. They behave either as noise amplifiers or as oscillators, both of which exhibit strong nonlinearities ( Huerre & Monkewitz 1990 ). The local approach is inherently weakly nonparallel and it assumes that the basic flow varies on a long length scale compared to the wavelength of the instability waves. The dynamics of the flow is then considered as a superposition of linear or nonlinear instability waves that, at leading order, behave at each streamwise station as if the flow were homogeneous in the streamwise direction. In the fully global context, the basic flow and the instabilities do not have to be characterized by widely separated length scales, and the dynamics is then viewed as the result of the interactions between Global modes living in the entire physical domain with the streamwise direction as an eigendirection. This second approach is more and more resorted to as a result of increased computational capability. The earlier review of Huerre & Monkewitz (1990) emphasized how local linear theory can account for the noise amplifier behavior as well as for the onset of a Global mode. The present survey first adopts the opposite point of view by demonstrating how fully global theory accounts for the noise amplifier behavior of open flows. From such a perspective, there is strong emphasis on the very peculiar nonorthogonality of linear Global modes, which in turn allows a novel interpretation of recent numerical simulations and experimental observations. The nonorthogonality of linear Global modes also imposes severe constraints on the extension of linear global theory to the fully nonlinear régime. When the flow is weakly nonparallel, this limitation is so severe that the linear Global mode theory is of little help. It is then much more appropriate to develop a fully nonlinear formulation involving the presence of a front separating the base state region from the bifurcated state region.Keywords
This publication has 111 references indexed in Scilit:
- Performance of a linear robust control strategy on a nonlinear model of spatially developing flowsJournal of Fluid Mechanics, 2004
- Transition to turbulence in open flows: what linear and fully nonlinear local and global theories tell usEuropean Journal of Mechanics - B/Fluids, 2004
- The decay of stabilizability with Reynolds number in a linear model of spatially developing flowsProceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2003
- Against the windPhysics of Fluids, 1999
- Nonlinear convective/absolute instabilities in parallel two-dimensional wakesPhysics of Fluids, 1998
- Asymptotic properties of a nonlinéar αω-dynamo wave: Period, amplitude and latitude dependenceGeophysical & Astrophysical Fluid Dynamics, 1997
- Global Measures of Local Convective InstabilitiesPhysical Review Letters, 1997
- Unsteadiness and convective instabilities in two-dimensional flow over a backward-facing stepJournal of Fluid Mechanics, 1996
- On the spatial structure of global modes in wake flowPhysics of Fluids, 1995
- Bifurcations to Local and Global Modes in Spatially Developing FlowsPhysical Review Letters, 1988