Fabrication of semiconductor Kagome lattice structure by selective area metalorganic vapor phase epitaxy

Abstract
Artificial two-dimensional semiconductor Kagome lattice structures formed by quantum wires can show ferromagnetism when the flatband is half filled, even though it does not have any magnetic elements. Experimental realization of such a Kagome lattice structure is reported. The structure, with different pattern periods, was formed with GaAsquantum wires by selective area metalorganic vapor phase epitaxy on GaAs (111)B substrates. To overcome the lateral overgrowth and to improve the shape of smaller period pattern, flow rate modulation epitaxy was employed and a GaAs Kagome lattice structure with 1 μm period was effectively grown.