Single-Particle Self-Excited Oscillator

Abstract
Electronic feedback is used to self-excite the axial oscillation of a single electron in a Penning trap. Large, stable, easily detected oscillations arise even in an anharmonic potential. Amplitudes are controlled by adjusting the feedback gain, and frequencies can be made nearly independent of amplitude fluctuations. Quantum jump spectroscopy of a perpendicular cyclotron motion reveals the absolute temperature and amplitude of the self-excited oscillation. The possibility to quickly measure parts per billion frequency shifts could open the way to improved measurements of e, e+, p, and p¯ magnetic moments.

This publication has 16 references indexed in Scilit: