Efficient coupling of catalysis and dynamics in the E1 component of Escherichia coli pyruvate dehydrogenase multienzyme complex
- 29 January 2008
- journal article
- Published by Proceedings of the National Academy of Sciences in Proceedings of the National Academy of Sciences
- Vol. 105 (4) , 1158-1163
- https://doi.org/10.1073/pnas.0709328105
Abstract
Protein motions are ubiquitous and are intrinsically coupled to catalysis. Their specific roles, however, remain largely elusive. Dynamic loops at the active center of the E1 component of Escherichia coli pyruvate dehydrogenase multienzyme complex are essential for several catalytic functions starting from a predecarboxylation event and culminating in transfer of the acetyl moiety to the E2 component. Monitoring the kinetics of E1 and its loop variants at various solution viscosities, we show that the rate of a chemical step is modulated by loop dynamics. A cysteine-free E1 construct was site-specifically labeled on the inner loop (residues 401–413), and the EPR nitroxide label revealed ligand-induced conformational dynamics of the loop and a slow “open ↔ close” conformational equilibrium in the unliganded state. An 19 F NMR label placed at the same residue revealed motion on the millisecond-second time scale and suggested a quantitative correlation of E1 catalysis and loop dynamics for the 200,000-Da protein. Thermodynamic studies revealed that these motions may promote covalent addition of substrate to the enzyme-bound thiamin diphosphate by reducing the free energy of activation. Furthermore, the global dynamics of E1 presumably regulate and streamline the catalytic steps of the overall complex by inducing an entirely entropic (nonmechanical) negative cooperativity with respect to substrate binding at higher temperatures. Our results are consistent with, and reinforce the hypothesis of, coupling of catalysis and regulation with enzyme dynamics and suggest the mechanism by which it is achieved in a key branchpoint enzyme in sugar metabolism.Keywords
This publication has 45 references indexed in Scilit:
- The 1′,4′-iminopyrimidine tautomer of thiamin diphosphate is poised for catalysis in asymmetric active centers on enzymesProceedings of the National Academy of Sciences, 2007
- Binding induced conformational changes of proteins correlate with their intrinsic fluctuations: a case study of antibodiesBMC Structural Biology, 2007
- Dynamically driven protein allosteryNature Structural & Molecular Biology, 2006
- Intrinsic dynamics of an enzyme underlies catalysisNature, 2005
- Molecular Recognition via Coupled Folding and Binding in a TPR DomainJournal of Molecular Biology, 2005
- Amino-Terminal Residues 1−45 of the Escherichia coli Pyruvate Dehydrogenase Complex E1 Subunit Interact with the E2 Subunit and Are Required for Activity of the Complex but Not for Reductive Acetylation of the E2 SubunitBiochemistry, 2004
- Solution-state NMR investigations of triosephosphate isomerase active site loop motion: ligand release in relation to active site loop dynamicsJournal of Molecular Biology, 2001
- Electron Paramagnetic Resonance Studies of Spin-Labeled Fatty Acid Binding Sites in Candida Rugosa LipasesThe Journal of Physical Chemistry B, 1998
- 2-Oxo-3-alkynoic Acids, Universal Mechanism-Based Inactivators of Thiamin Diphosphate-Dependent Decarboxylases: Synthesis and Evidence for Potent Inactivation of the Pyruvate Dehydrogenase Multienzyme ComplexBiochemistry, 1997
- The structural basis of negative cooperativity: receptors and enzymesCurrent Opinion in Structural Biology, 1996