A multi-band model for the hole transport in silicon at high energies

Abstract
A new microscopic silicon model for hole transport at high electric fields featuring two valence bands in a finite Brillouin zone is presented. The band parameters and the electron-phonon coupling constants were determined by best fitting the density of states and the experimental and theoretical results for transport properties in the low and intermediate field-strength range. Hole impact ionization has been introduced following a new scheme that goes beyond the limitations contained in the Keldysh formula. The present model, coupled to an analogous model already developed for electrons, allows study of bipolar transport silicon devices. Applications to bulk Si and Si p-MOSFETs are presented.