RNA Interference with Measles Virus N, P, and L mRNAs Efficiently Prevents and with Matrix Protein mRNA Enhances Viral Transcription

Abstract
In contrast to studies with genetically modified viruses, RNA interference allows the analysis of virus infections with identical viruses and posttranscriptional ablation of individual gene functions. Using RNase III-generated multiple short interfering RNAs (siRNAs) against the six measles virus genes, we found efficient downregulation of viral gene expression in general with siRNAs against the nucleocapsid (N), phosphoprotein (P), and polymerase (L) mRNAs, the translation products of which form the ribonucleoprotein (RNP) complex. Silencing of the RNP mRNAs was highly efficient in reducing viral messenger and genomic RNAs. siRNAs against the mRNAs for the hemagglutinin (H) and fusion (F) proteins reduced the extent of cell-cell fusion. Interestingly, siRNA-mediated knockdown of the matrix (M) protein not only enhanced cell-cell fusion but also increased the levels of both mRNAs and genomic RNA by a factor of 2 to 2.5 so that the genome-to-mRNA ratio was constant. These findings indicate that M acts as a negative regulator of viral polymerase activity, affecting mRNA transcription and genome replication to the same extent.