Are axoplasmic microtubules necessary for membrane excitation?

Abstract
The excitability of the squid giant axon was studied as a function of transmembrane hydrostatic pressure differences, the latter being altered by the technique of intracellular perfusion. When a KF solution was used as the internal medium, a pressure difference of about 15 cm water had very little effect on either the membrane potential or excitability. However, within a few minutes after introducing either a KCl-containing, a KBr-containing, or a colchicine-containing solution as the internal medium, with the same pressure difference across the membrane, the axon excitability was suppressed. In these cases, removal of the pressure difference restored the excitability, indicating that the structure of membrane was not irreversibly damaged. Electron-microscopic observations of these axons revealed that the perfusion with a KF solution or colchicine-containing solution preserves the submembranous cytoskeletal layer, whereas perfusion with a KCl or KBr solution dissolves it. These results suggest that the submembranous cytoskeletons including microtubules provide an important mechanical support to the excitable membrane but are not essential elements in channel activities.