Enhanced backscattering and transmission of light from random surfaces on semi-infinite substrates and thin films

Abstract
The enhanced backscattering of light from a random surface is manifested by a well defined peak in the retro-reflection direction in the angular distribution of the intensity of the incoherent component of the light scattered from such a surface. In this paper we present several new theoretical and experimental results bearing on the conditions under which enhanced backscattering occurs, and the way in which this phenomenon depends on the nature of the random surface roughness, both in the case that the random surface bounds a semi-infinite scattering medium and in the case that it bounds a film, either free-standing or on a reflecting substrate. In addition, we present new results on the transmission of light through thin metallic films bounded by random surfaces, which display the phenomenon of enhanced transmission, namely a well defined peak in the antispecular direction in the angular distribution of the intensity of the incoherent component of the light transmitted through such films.