Analysis of Viscous Micropumps and Microturbines

Abstract
A numerical study of the three-dimensional viscous fluid flow in a novel pump/turbine device appropriate for microscale applications is performed. The device essentially consists of a rotating or free-to-rotate cylinder eccentrically placed in a channel, and is shown to be capable of generating a net flow against an externally imposed pressure gradient, or, conversely, generating a net torque in the presence of an externally imposed bulk flow. Full Navier:Stokes, finite-element simulations are carried out to study the influence of the width and other geometric as well as dynamic parameters, and the results are compared to previous two-dimensional numerical and physical experiments. The three-dimensional simulations indicate a gradual decrease of the bulk velocity and pump performance as the two side walls become closer providing increased viscous resistance to the flow. However, effective pumping is still observed with extremely narrow channels. The utility of the device as a microturbine is also demonstrated for the first time in the present simulations. Particularly, the angular velocity of the rotor and the viscous torque are determined when a bulk velocity is imposed.

This publication has 18 references indexed in Scilit: