Impact of endurance training on murine spontaneous activity, muscle mitochondrial DNA abundance, gene transcripts, and function

Abstract
We hypothesized that enhanced skeletal muscle mitochondrial function following aerobic exercise training is related to an increase in mitochondrial transcription factors, DNA abundance [mitochondrial DNA (mtDNA)], and mitochondria-related gene transcript levels, as well as spontaneous physical activity (SPA) levels. We report the effects of daily treadmill training on 12-wk-old FVB mice for 5 days/wk over 8 wk at 80% peak O2 consumption and studied the training effect on changes in body composition, glucose tolerance, muscle mtDNA muscle, mitochondria-related gene transcripts, in vitro muscle mitochondrial ATP production capacity (MATPC), and SPA levels. Compared with the untrained mice, the trained mice had higher peak O2 consumption (+18%; P < 0.001), lower percentage of abdominal (−25.4%; P < 0.02) and body fat (−19.5%; P < 0.01), improved glucose tolerance (P < 0.04), and higher muscle mitochondrial enzyme activity (+19.5–43.8%; P < 0.04) and MATPC (+28.9 to +32.4%; P < 0.01). Gene array analysis showed significant differences in mRNAs of mitochondria-related ontology groups between the trained and untrained mice. Training also increased muscle mtDNA (+88.4 to +110%; P < 0.05), peroxisome proliferative-activated receptor-γ coactivator-1α protein (+99.5%; P < 0.04), and mitochondrial transcription factor A mRNA levels (+21.7%; P < 0.004) levels. SPA levels were higher in trained mice (P = 0.056, two-sided t-test) and significantly correlated with two separate substrate-based measurements of MATPC (P < 0.02). In conclusion, aerobic exercise training enhances muscle mitochondrial transcription factors, mtDNA abundance, mitochondria-related gene transcript levels, and mitochondrial function, and this enhancement in mitochondrial function occurs in association with increased SPA.