The Dolomite Problem Revisited1

Abstract
A reassessment of the abundance of dolomite in carbonate sediments has confirmed that carbonates deposited during the past 150 Ma contain, on average, less dolomite than Proterozoic and Paleozoic carbonates. The lower dolomite content of the more recent carbonate sediments results from the increase in the deposition of CaCO3 in deep-sea sediments, and to the difficulty of dolomitizing deep-sea CaCO3 by reaction with cold, unevaporated seawater. The decrease in the rate of dolomite formation during the past 150 Ma has led to an increase in the output of oceanic Mg+2 by the reaction of seawater with clay minerals and with ocean-floor basalts. The increase in the output of marine Mg+2 into these reservoirs has been brought about by an increase in the Mg+2 concentration of seawater. During the past 40 Ma, the concentration of Mg+2 in seawater has probably increased by ∼18 mmol/kg, and probably has been accompanied by an equimolar increase in the concentration of SO42.