Theory and Implementation of an Analog-to-Information Converter using Random Demodulation

Abstract
The new theory of compressive sensing enables direct analog-to-information conversion of compressible signals at sub-Nyquist acquisition rates. The authors develop new theory, algorithms, performance bounds, and a prototype implementation for an analog-to-information converter based on random demodulation. The architecture is particularly apropos for wideband signals that are sparse in the time-frequency plane. End-to-end simulations of a complete transistor-level implementation prove the concept under the effect of circuit nonidealities.

This publication has 9 references indexed in Scilit: