Abstract
The microheterogeneity of recombinant human phenylalanine hydroxylase (hPAH) was investigated by isoelectric focusing and 2D electrophoresis. When expressed in Escherichia coli four main components (denoted hPAH I-IV) of ≈ 50 kDa were observed on long-term induction at 28–37 °C with isopropyl thio-β-d-galactoside (IPTG), differing in pI by about 0.1 pH unit. A similar type of microheterogeneity was observed when the enzyme was expressed (1 h at 37 °C) in an in vitro transcription-translation system, including both its nonphosphorylated and phosphorylated forms which were separated on the basis of a difference in mobility on SDS/PAGE. Experimental evidence is presented that the microheterogeneity is the result of nonenzymatic deamidations of labile amide containing amino acids. When expressed in E. coli at 28 °C, the percentage of the acidic forms of the enzyme subunit increased as a function of the induction time with IPTG, representing about 50% on 8 h induction. When the enzyme obtained after 2 h induction (containing mainly hPAH I) was incubated in vitro, its conversion to the acidic components (hPAH II–IV) revealed a pH and temperature dependence characteristic of a nonenzymatic deamidation of asparagine residues in proteins, with the release of ammonia. Comparing the microheterogeneity of the wild-type and a truncated form of the enzyme expressed in E. coli, it is concluded that the labile amide groups are located in the catalytic domain as defined by crystal structure analysis [Erlandsen, H., Fusetti, F., Martínez, A., Hough, E., Flatmark, T. & Stevens, R. C. (1997) Nat. Struct. Biol. 4, 995–1000]. It is further demonstrated that the progressive deamidations which occur in E. coli results in a threefold increase in the catalytic efficiency (Vmax/[S]0.5) of the enzyme and an increased susceptibility to limited tryptic proteolysis, characteristic of a partly activated enzyme. The results also suggest that deamidation may play a role in the long term regulation of the catalytic activity and the cellular turnover of this enzyme.