Isoperimetric Inequalities in a Class of Nonlinear Eigenvalue Problems
- 1 August 1978
- journal article
- Published by Society for Industrial & Applied Mathematics (SIAM) in SIAM Journal on Mathematical Analysis
- Vol. 9 (4) , 671-681
- https://doi.org/10.1137/0509048
Abstract
In this work we prove an isoperimetric inequality for the eigenvalue $\lambda $ and other quantities in the problem $\Delta u + \lambda u^{2p + 1} = 0$ in D, $u = 0$ on $\partial D$ where D is a plane, bounded domain.
Keywords
This publication has 21 references indexed in Scilit:
- Existence theorems, qualitative results and a priori bounds for a class of nonlinear Dirichlet problemsArchive for Rational Mechanics and Analysis, 1975
- On two inequalities of sobolev typeApplicable Analysis, 1974
- The Rayleigh–Faber–Krahn Theorem for the Characteristic Values Associated with a Class of Nonlinear Boundary Value ProblemsSIAM Journal on Mathematical Analysis, 1973
- Quasilinear Dirichlet problems driven by positive sourcesArchive for Rational Mechanics and Analysis, 1973
- Konstruktion isoperimetrischer Ungleichungen der mathematischen Physik aus solchen der GeometrieCommentarii Mathematici Helvetici, 1971
- On the Existence of Positive Solutions of Nonlinear Elliptic Boundary value ProblemsIndiana University Mathematics Journal, 1971
- On symmetric membranes and conformal radius: Some complements to Pólya's and Szegö's inequalitiesArchive for Rational Mechanics and Analysis, 1965
- Some problems in the theory of quasilinear equationsPublished by American Mathematical Society (AMS) ,1963
- Note on a theorem of HilbertMathematische Zeitschrift, 1920
- Sur la nature analytique des solutions des équations aux dérivées partielles du second ordreMathematische Annalen, 1904