Intracellular calcium transients in myocardium from spontaneously hypertensive rats during the transition to heart failure.

Abstract
To investigate the mechanism of impaired myocardial function after long-term pressure overload, we studied cardiac muscle mechanical contraction and intracellular calcium transients using the bioluminescent indicator aequorin. Left ventricular papillary muscle preparations were examined from three groups of rats: 1) aging spontaneously hypertensive rats (SHR) with clinical and pathological evidence suggesting heart failure (SHR-F group), 2) age-matched SHRs with no evidence of heart failure (SHR-NF group), and 3) age-matched normotensive Wistar-Kyoto rats (WKY group). Isometric force development was depressed in both SHR groups relative to the WKY group. Resting [Ca2+]i was lower in the SHR-F group, and the time to peak [Ca2+]i was prolonged in this group. The relative increases in peak [Ca2+]i with the inotropic interventions of increased [Ca2+]o and the addition of isoproterenol were similar among groups. Although inotropy increased in all groups with increased [Ca2+]o, after isoproterenol, inotropy increased only in the WKY group. Thus, in SHR myocardium, [Ca2+]i increased after isoproterenol, but inotropy failed to increase. Myosin isozymes were shifted toward the V3 isoform in both SHR groups; the V3 isoform was virtually 100% in papillary muscles from the SHR-F group. These changes may reflect events directly contributing to the development of heart failure or represent adaptive changes to chronic pressure overload and heart failure.