Studies of H2O on β-AgI surfaces: An effective pair potential model
- 15 July 1980
- journal article
- research article
- Published by AIP Publishing in The Journal of Chemical Physics
- Vol. 73 (2) , 923-933
- https://doi.org/10.1063/1.440211
Abstract
Effective pair potential functions are used to study the adsorption of a water molecule on surfaces of β‐AgI. The water molecule is represented by a rigid point charge ST‐2 model and the AgI substrate by an array of point atoms with effective charge ±0.6e, Lennard‐Jones cores, and ionic polarizabilities. Maximal binding energy surfaces and optimal H2O configurations are generated for the water molecule adsorbed on the rigid and unrelaxed basal and prism AgI faces. Adsorption of the H2O above a two layer ledge, an iodine vacancy, and an H2O trapped in the vacancy are modeled for the iodine basal face and compared with results for the smooth substrates. These studies indicate the H2O adsorption is favored at ’’interstitial’’ sites where no substrate atoms lie directly below either in the first or second layer. The prism face is found to attract the water molecule more strongly and provide larger energy barriers to surface diffusion. The model predicts maximal binding energies of 20 and 16 kcal/mole for the adsorbed H2O on the preferred prism and basal face sites, respectively. The iodine vacancy produces an adsorption site with optimal binding energy 19 kcal/mole and the two layer ledge results in an extended region of strong binding sites of order 20 kcal/mole. The water molecule trapped in the I vacancy creates a surface charge ’’defect’’ around which additional water molecules could cluster with dipole moments in configurations favorable for H2O–H2O bonding.Keywords
This publication has 26 references indexed in Scilit:
- Ionic Motion in-AgIPhysical Review Letters, 1978
- Lattice dynamics of-(silver iodide) by neutron scatteringPhysical Review B, 1978
- Molecular‐beam study of the nucleation of water on silver iodideJournal of Vacuum Science and Technology, 1977
- A partition function model for nucleation on surfacesJournal of Statistical Physics, 1975
- Electrostatic potentials outside ionic crystalsJournal of the Chemical Society, Faraday Transactions 2: Molecular and Chemical Physics, 1972
- Energetics of the adsorption of water vapor on "pure" silver iodideThe Journal of Physical Chemistry, 1968
- An efficient method for finding the minimum of a function of several variables without calculating derivativesThe Computer Journal, 1964
- Adsorption of water vapour on insoluble metal halidesTransactions of the Faraday Society, 1962
- Electronic Polarizabilities of Ions in CrystalsPhysical Review B, 1953
- Cohesion at a crystal surfaceTransactions of the Faraday Society, 1928