Dissociation of Temperature-Gradient and Evaporative Heat Loss during Cold Gas Hyperventilation in Cold-induced Asthma

Abstract
We examined temperature-gradient and evaporative energy losses during cold gas inhalation challenges in patients with exercise-induced asthma by using gases with similar watercarrying capacities but significantly different volume heat capacities. Seven subjects were asked to hyperventilate mixtures of 80% helium/20% oxygen (HeO2) or 80% sulfur hexafluoride/20% oxygen (SF6O2) for 5 min at a fixed target minute ventilation of 20 .times. FEV1 and an inspired gas temperature of 0.degree.C. Each subject equilibrated his or her lungs with the appropriate gas mixture prior to testing: PETCO2 and FIO2 were monitored and maintained at constant values (CO2 = 0.05; O2 = 0.20) by CO2 scrubbing and addition of compressed gas to the system. Gas composition, inspired and expired flow rates, and gas temperatures at the airway opening were recorded in real time using a computer-based data collection system that calculated respiratory heat loss on a per breath basis. Bronchoconstriction was quantitated using specific airway conductance measured before and serially after each challenge. The degree of bronchoconstriction correlated closely with evaporative respiratory heat loss (r = 0.658 p < 0.05), but poorly with both temperature-gradient (r = 0.114, p > 0.20) and total (r = 0.268, p > 0.15) heat loss. These findings suggest that total respiratory heat loss is not the primary stimulus in exercise-induced asthma, and further suggest that total water loss, or focal heat/water loss, may be important in inducing bronchospasm in this subset of asthmatics.