Arabidopsis gls Mutants and Distinct Fd-GOGAT Genes: Implications for Photorespiration and Primary Nitrogen Assimilation
Open Access
- 1 May 1998
- journal article
- research article
- Published by Oxford University Press (OUP) in Plant Cell
- Vol. 10 (5) , 741-752
- https://doi.org/10.1105/tpc.10.5.741
Abstract
Ferredoxin-dependent glutamate synthase (Fd-GOGAT) plays a major role in photorespiration in Arabidopsis, as has been determined by the characterization of mutants deficient in Fd-GOGAT enzyme activity (gls). Despite genetic evidence for a single Fd-GOGAT locus and gene, we discovered that Arabidopsis contains two expressed genes for Fd-GOGAT (GLU1 and GLU2). Physical and genetic mapping of the gls1 locus and GLU genes indicates that GLU1 is linked to the gls1 locus, whereas GLU2 maps to a different chromosome. Contrasting patterns of GLU1 and GLU2 expression explain why a mutation in only one of the two genes for Fd-GOGAT leads to a photorespiratory phenotype in the gls1 mutants. GLU1 mRNA was expressed at the highest levels in leaves, and its mRNA levels were specifically induced by light or sucrose. In contrast, GLU2 mRNA was expressed at lower constitutive levels in leaves and preferentially accumulated in roots. Although these results suggest a major role for GLU1 in photorespiration, the sucrose induction of GLU1 mRNA in leaves also suggests a role in primary nitrogen assimilation. This possibility is supported by the finding that chlorophyll levels of a gls mutant are significantly lower than those of the wild type when grown under conditions that suppress photorespiration. Both the mutant analysis and gene regulation studies suggest that GLU1 plays a major role in photorespiration and also plays a role in primary nitrogen assimilation in leaves, whereas the GLU2 gene may play a major role in primary nitrogen assimilation in roots.Keywords
This publication has 40 references indexed in Scilit:
- Structure and Regulation of Ferredoxin‐Dependent Glutamase Synthase from Arabidopsis ThalianaEuropean Journal of Biochemistry, 1997
- Use of Arabidopsis mutants and genes to study amide amino acid biosynthesis.Plant Cell, 1995
- Split genes and RNA splicingCell, 1994
- Zea3: a pleiotropic mutation affecting cotyledon development, cytokinin resistance and carbon-nitrogen metabolismThe Plant Journal, 1994
- Cloning and sequencing of the gene encoding spinach ferredoxin-dependent glutamate synthaseBiochimica et Biophysica Acta (BBA) - Bioenergetics, 1994
- A wheat histone H3 promoter confers cell division‐dependent and ‐independent expression of the gus A gene in transgenic rice plantsThe Plant Journal, 1993
- Chloroplastic Precursors and their Transport Across the Envelope MembranesAnnual Review of Plant Biology, 1989
- Inhibition of Photosynthesis in Barley with Decreased Levels of Chloroplastic Glutamine Synthetase ActivityJournal of Experimental Botany, 1987
- Glutamate Synthase Isoforms in RicePlant Physiology, 1982
- Photorespiratory nitrogen cycleNature, 1978