Effect of sino-aortic denervation in comparison to cardiopulmonary deafferentiation on long-term blood pressure in conscious dogs

Abstract
The isolated and combined influence of cardiopulmonary and sinoaortic denervation on long-term blood pressure (MAP), heart rate (HR), plasma renin activity (PRA) and plasmavolume (PV) was studied in 11 conscious, chronically instrumented foxhounds receiving a normal sodium diet. MAP, HR, PV and PRA remained unchanged in the 5 dogs after bilateral thoracic vagal stripping, which eliminates the cardiopulmonary afferents. After sino-aortic denervation in another 5 dogs there was equally little change when compared to the control group. Only total baroreceptor and cardiopulmonary denervation (7 dogs) revealed significantly higher levels of MAP (119.6±4.6 vs. 100.4±1.5,PPP<0.05). In conclusion, the function of either arterial baroreceptors or cardiopulmonary receptors is sufficient for normal circulatory control. When both groups of receptor afferents are interrupted, MAP, HR, and PRA rise to significantly higher levels. Thus, both systems interact in a sense of a nonadditive attenuation on “cardiovascular centres”. This may clarify previous disputes concerning neurogenic hypertension, and supplies information for the role of the renin-angiotensin system in blood pressure control.