Immobilization of Reducing Sugars as Toxin Binding Agents

Abstract
A simple and economical procedure for the attachment of reducing sugars to aminated solid supports has been developed. Reaction of the amino groups on the solid support with p-nitrophenyl chloroformate, followed by 1,6-hexanediamine, yields a chain-extended amine to which reducing sugars can be attached while remaining accessible to macromolecules. Immobilization of the reducing sugars involves a simple incubation followed by trapping of the resulting glycosylamine with acetic anhydride and recovery of the unreacted sugar by filtration. This technique was used to immobilize lactose and sialyllactose onto silylaminated Chromosorb P, producing solid supports that effectively neutralized the activity of cholera toxin from Vibrio cholerae and heat-labile enterotoxin of enterotoxigenic Escherichia coli. The general applicability of such solid supports for toxin neutralization was further demonstrated by immobilization of the enzymatically synthesized αGal(1−3)βGal(1−4)Glc trisaccharide, which produced a support that efficiently neutralized toxin A of Clostridium difficile. The results from this study suggest that these solid supports have the potential to serve as inexpensive therapeutics for bacterial toxin-mediated diarrheal diseases.