Application of the Second Method of Lyapunov to the Proof of the Markov Stability Criterion
- 1 May 1967
- journal article
- research article
- Published by Taylor & Francis in International Journal of Control
- Vol. 5 (5) , 473-482
- https://doi.org/10.1080/00207176708921778
Abstract
The paper indicates a number of approaches to checking the roots of a polynomial to determine whether they have negative real parts. Interrelation between the various approaches are discussed, and the stability criterion in terms of Markov determinants is related to the Hermite criterion with the aid of Lyapunov theory.Keywords
This publication has 10 references indexed in Scilit:
- A System Theory Criterion for Positive Real MatricesSIAM Journal on Control, 1967
- A matrix for evaluating Schwarz's formIEEE Transactions on Automatic Control, 1966
- LYAPUNOV FUNCTIONS FOR THE PROBLEM OF LUR'E IN AUTOMATIC CONTROLProceedings of the National Academy of Sciences, 1963
- A new proof of the Routh-Hurwitz stability criterion using the second method of LiapunovMathematical Proceedings of the Cambridge Philosophical Society, 1962
- A symmetric matrix formulation of the Hurwitz-Routh stability criterionIRE Transactions on Automatic Control, 1962
- Control System Analysis and Design Via the “Second Method” of Lyapunov: I—Continuous-Time SystemsJournal of Basic Engineering, 1960
- Ein Verfahren zur Stabilitätsfrage bei Matrizen-EigenwertproblemenZeitschrift für angewandte Mathematik und Physik, 1956
- Bemerkung zu einem Satze von HurwitzZAMM - Journal of Applied Mathematics and Mechanics / Zeitschrift für Angewandte Mathematik und Mechanik, 1944
- Problème général de la stabilité du mouvementAnnales de la faculté des sciences de Toulouse Mathématiques, 1907
- Ueber die Bedingungen, unter welchen eine Gleichung nur Wurzeln mit negativen reellen Theilen besitztMathematische Annalen, 1895