Inter- and Intralocus Recombination Drive MHC Class IIB Gene Diversification in a Teleost, the Three-Spined Stickleback Gasterosteus aculeatus
Open Access
- 24 August 2005
- journal article
- Published by Springer Nature in Journal of Molecular Evolution
- Vol. 61 (4) , 531-541
- https://doi.org/10.1007/s00239-004-0340-0
Abstract
The mutational mechanism underlying the striking diversity in MHC (major histocompatibility complex) genes in vertebrates is still controversial. In order to evaluate the role of inter- and intragenic recombination in MHC gene diversification, we examined patterns of nucleotide polymorphism across an exon/intron boundary in a sample of 31 MHC class IIB sequences of three-spined stickleback (Gasterosteus aculeatus). MHC class IIB genes of G. aculeatus were previously shown to be under diversifying (positive) selection in mate choice and pathogen selection experiments. Based on recoding of alignment gaps, complete intron 2 sequences were grouped into three clusters using maximum-parsimony analysis. Two of these groups had >90% bootstrap support and were tentatively assigned single locus status. Intron nucleotide diversity within and among loci was low (p-distance within and among groups = 0.016 and 0.019, respectively) and fourfold lower than the rate of silent mutations in exon 2, suggesting that noncoding regions are homogenized by frequent interlocus recombination. A substitution analysis using GENECONV revealed as many intergenic conversion events as intragenic ones. Recombination between loci may explain the occurrence of sequence variants that are particularly divergent, as is the case in three-spined stickleback, with nucleotide diversity attaining dN = 0.39 (peptide-binding residues only). For both MHC class II loci we also estimated the amount of intragenic recombination as population rate (4N e r) under the coalescent and found it to be approximately three times higher compared to point mutations (Watterson estimate per gene, 4N e μ). Nonindependence of molecular evolution across loci and frequent recombination suggest that MHC class II genes of bony fish may follow different evolutionary dynamics than those of mammals. Our finding of widespread recombination suggests that phylogenies of MHC genes should not be based on coding segments but rather on noncoding introns.Keywords
This publication has 53 references indexed in Scilit:
- DnaSP, DNA polymorphism analyses by the coalescent and other methodsBioinformatics, 2003
- Unalignable sequences and molecular evolutionTrends in Ecology & Evolution, 2001
- MHC class II beta sequence diversity in the deer mouse (Peromyscus maniculatus): implications for models of balancing selectionMolecular Ecology, 2001
- SSCP analysis of Mhc class IIB genes in the threespine sticklebackJournal of Fish Biology, 2001
- New HLA–DPB1 alleles generated by interallelic gene conversion detected by analysis of spermNature Genetics, 1995
- Three-dimensional structure of the human class II histocompatibility antigen HLA-DR1Nature, 1993
- Shared polymorphism between gorilla and human major histocompatibility complex DRB lociHuman Immunology, 1992
- Mating patterns in seminatural populations of mice influenced by MHC genotypeNature, 1991
- Pattern of nucleotide substitution at major histocompatibility complex class I loci reveals overdominant selectionNature, 1988
- Non-random association between electromorphs and inversion chromosomes in finite populationsGenetics Research, 1980