Abstract
The variations in refractive index in stratified liquid flows have been a major impediment to the use of laser-Doppler anemometry in these situations. This paper describes a method whereby these refractive-index variations can be drastically reduced while retaining the dynamically important density differences. The method uses two solutes to produce the density differences and it is shown that double-diffusive convection (of the salt-finger type) can be avoided by using a suitable pair of solutes. A theoretical model of the lateral wander of a single laser beam propagating through a turbulent medium is developed and this explains the success of the method.

This publication has 9 references indexed in Scilit: