Diabetic state-induced modification of resting membrane potential and conductance in diaphragm muscle of alloxan and diabetic KK-CAy mice

Abstract
The electrical properties of skeletal muscle membranes were investigated in genetically diabetic KK-CAy mice and alloxan-induced diabetic ddY mice. Using isolated phrenic nerve-diaphragm muscle or sciatic nerve-gastrocnemius muscle in situ preparations, nerve-stimulated twitch tensions (the maximal value) were obtained at lower voltage pulse in diabetic KK-CAy mice than in normal ddY mice. The diabetic state reduced resting membrane potentials (1.7–4.0 mV) and resting membrane conductance (0.37–0.44 μ siemen), decreased the amplitude (3.8–3.9 mV) and overshoot (4.5 mV) of directly induced-action potential, and prolonged action potential duration. In the diabetic state, resting membrane conductance was multiply-correlated with blood glucose level and resting membrane potential. In alloxan-induced diabetic mice, resting membrane potentials were significantly multiply-correlated with the weeks elapsed after alloxan injection and blood glucose level (p<0.01). Since the reduction of resting membrane potential correlated with the weeks, changes in resting membrane potential may be involved in the decrease in insulin-like growth factor action. The reduction of resting membrane conductance was correlated with the increase in blood glucose.