Abstract
The N-methylacridinium cation is bound to hydrophobic sites of horse liver alcohol dehydrogenase and human serum albumin with an observed stoichiometry of one molecule N-methyl-acridinium chloride per subunit of alcohol dehydrogenase and 2.5 molecules of the dye per molecule human serum albumin; the dissociation constants are 3.6 X 10(-5) M and 1.7 X 10(-5) M, respectively. In light, the proteins catalyze the dismutation of N-methylacridinium chloride to N-methylacridone and N-methyl-9,10-dihydroacridine. The presence or absence of oxygen has no effect upon the observed reaction rate. If horse liver alcohol dehydrogenase is used as catalyst, the reaction is inhibited by adenosine diphosphoribose and by 1,1'-dimethyl-4,4'-bipyridylium dichloride. It is concluded that the N-methylacridinium cation is bound within the catalytic site of the enzyme interacting with the binding sites of the nicotinium ring and/or the binding site of the lipophilic part of the substrate. The anaerobic photodismutation of N-methylacridinium chloride to N-methyl-9,10-dihydroacridine and N-methylacridone can be explained by several alternative patways (see Appendix by S. Hünig), the overall reaction being 2[N-Methylacridinium]+ + H2Ohw leads to N-Methyl-9,10-dihydroacridine + N-methylacridone + 2H+. The prerequisite, a high rate of proton transfer from the reaction site, seems to be common property of the hydrophobic binding regions for the N-methylacridinium cation in both horse liver alcohol dehydrogenase and human serum albumin.