Functional domains of the floral regulator AGAMOUS: characterization of the DNA binding domain and analysis of dominant negative mutations.
- 1 May 1996
- journal article
- Published by Oxford University Press (OUP) in Plant Cell
- Vol. 8 (5) , 831-845
- https://doi.org/10.1105/tpc.8.5.831
Abstract
The Arabidopsis MADS box gene AGAMOUS (AG) controls reproductive organ identity and floral meristem determinacy. The AG protein binds in vitro to DNA sequences similar to the targets of known MADS domain transcription factors. Whereas most plant MADS domain proteins begin with the MADS domain, AG and its orthologs contain a region N-terminal to the MADS domain. All plant MADS domain proteins share another region with moderate sequence similarity called the K domain. Neither the region (I region) that lies between the MADS and K domains nor the C-terminal region is conserved. We show here that the AG MADS domain and the I region are necessary and sufficient for DNA binding in vitro and that AG binds to DNA as a dimer. To investigate the in vivo function of the regions of AG not required for in vitro DNA binding, we introduced several AG constructs into wild-type plants and characterized their floral phenotypes. We show that transgenic Arabidopsis plants with a 35S-AG construct encoding an AG protein lacking the N-terminal region produced apetala 2 (ap2)-like flowers similar to those ectopically expressing AG proteins retaining the N-terminal region. This result suggests that the N-terminal region is not required to produce the ap2-like phenotype. In addition, transformants with a 35S-AG construct encoding an AG protein lacking the C-terminal region produced ag-like flowers, indicating that this truncated AG protein inhibits normal AG function. Finally, transformants with a 35S-AG construct encoding an AG protein lacking both K and C regions produced flowers with more stamens and carpels. The phenotypes of the AG transformants demonstrate that both the K domain and the C-terminal region have important and distinct in vivo functions. We discuss possible mechanisms through which AG may regulate downstream genes.Keywords
This publication has 41 references indexed in Scilit:
- DNA binding properties of two Arabidopsis MADS domain proteins: binding consensus and dimer formation.Plant Cell, 1996
- Structure of serum response factor core bound to DNANature, 1995
- The ABCs of floral homeotic genesPublished by Elsevier ,1994
- Co‐suppression of the petunia homeotic gene fbp2 affects the identity of the generative meristemThe Plant Journal, 1994
- Conversion of Perianth into Reproductive Organs by Ectopic Expression of the Tobacco Floral Homeotic Gene NAG1Plant Physiology, 1993
- Ectopic expression of the floral homeotic gene AGAMOUS in transgenic Arabidopsis plants alters floral organ identityCell, 1992
- The homeotic gene APETALA3 of Arabidopsis thaliana encodes a MADS box and is expressed in petals and stamensPublished by Elsevier ,1992
- Negative regulation of the Arabidopsis homeotic gene AGAMOUS by the APETALA2 productCell, 1991
- Genetic Control of Flower Development by Homeotic Genes in Antirrhinum majusScience, 1990
- Saccharomyces cerevisiae protein involved in plasmid maintenance is necessary for mating of MATα cellsJournal of Molecular Biology, 1988