Spatial and Temporal Influences on the Cell-Specific Distribution of Glycine Decarboxylase in Leaves of Wheat (Triticum aestivum L.) and Pea (Pisum sativum L.)

Abstract
The distribution of glycine decarboxylase (GDC) in leaves of pea (Pisum sativum L.) and wheat (Triticum aestivum L.) has been investigated using immunogold labeling of the P-protein subunit of the GDC complex. Mitochondria in photosynthetic mesophyll cells were densely labeled, whereas those in nonphotosynthetic vascular parenchyma and epidermal cells were only weakly labeled. In pea leaves the density of immunogold labeling on mitochondria in the chloroplast-containing bundle sheath and stomatal guard cells was intermediate between that in mesophyll and epidermal cells. In both species the density of labeling on mitochondria in a cell appeared to reflect the photosynthetic capacity of the cell. This relationship was further examined in wheat where a natural developmental gradient exists along the lamina such that cell maturity increases with distance from the basal meristem. In this case the density of labeling on mesophyll cell mitochondria increased with photosynthetic development and with increasing maturity of the cell. Vascular cell mitochondria, however, became less densely labeled as the cells matured. The results indicate a close, positive correlation between the concentration of GDC in the mitochondria and the photosynthetic status of the host cell. This relationship is maintained effectively under the influence of both spatial (i.e. cellular differentiation across the lamina) and temporal (i.e. cellular development along the lamina) constraints.