A G-protein beta-subunit is essential for Dictyostelium development.

Abstract
Recent studies have demonstrated that G-protein-linked signal transduction pathways play a significant role in the developmental program of the simple eukaryotic organism Dictyostelium. We have reported previously the isolation of a G-protein beta-subunit and present here a more complete analysis of this gene. Low-stringency Southern blots and RFLP mapping studies suggest that the beta-subunit is a unique gene found on linkage group II. Its deduced amino acid sequence of 347 residues is approximately 60% identical to those of the human, Drosophila, and Caenorhabditis elegans beta-subunits. The carboxy-terminal 300 residues are about 70% identical; the amino-terminal 50 residues are quite divergent, containing only 10 identities. At all stages of growth and development, a single 1.9-kb beta-subunit mRNA is present at a high level, and a specific antibody detects a single 37-kD protein. We propose that G-protein heterotrimers are formed when this beta-subunit couples with each of the eight distinct G-protein alpha-subunits that are transiently expressed during development. Targeted disruption of the beta-subunit gene had no effect on the viability of haploid cells, but resulted in the inability of cells to aggregate.